contact us

Use the form on the right to contact us.

You can edit the text in this area, and change where the contact form on the right submits to, by entering edit mode using the modes on the bottom right.


Melbourne, VIC, 3004
Australia

Detailed reviews and information of the best solar panels, inverters and batteries. Plus hybrid and off-grid solar system reviews and information articles on how solar and battery systems work.

Blog

Reviews and information of the best Solar panels and inverters from SMA, Fronius, SunPower, SolaX, Q Cells, Trina, Jinko, Selectronic, Tesla Powerwall, ABB. Plus hybrid inverters, battery sizing, Lithium-ion and lead-acid batteries, off-grid and on-grid power systems.

Guide to sizing hybrid inverters and off-grid solar battery systems

Jason Svarc

 Diagram - Basic configuration of an AC coupled hybrid grid-connected power system

Diagram - Basic configuration of an AC coupled hybrid grid-connected power system

This is a guide only. For a less technical introduction see the basic guide to selecting home grid-tie or off-grid solar battery system.  Solar and battery storage systems must be installed by an experienced licensed electrical professional. Solar and Energy storage systems generate and store huge amounts of energy which can result in damage or serious injury if the installation does not meet all relevant regulations, standards & guidelines.

How to select a hybrid/off-grid inverter

Modern hybrid & energy storage systems have many specifications to consider before selecting and sizing an appropriate battery inverter/charger, hybrid solar inverter, or complete hybrid system with integrated battery storage. Here we help explain the key requirements which should be considered.

  1. Inverter power output - continuous and surge rating (kW)
  2. Solar PV array size (kW)
  3. Pass through power (A)
  4. Battery compatibility - System voltage and battery type
  5. Configuration - AC or DC coupled
  6. Software and energy management

1. Inverter Power Output

There are two main types of modern hybrid/off-grid inverters which are available in various sizes having different continuous and peak power ratings, measured in kW or kVA.

  1. Off-grid battery inverter/chargers with heavy duty transformers are more expensive but provide very high surge and peak power output and can handle high inductive loads, explained in more detail below.
  2. Hybrid all-in-one inverter systems use transformer-less inverters with 'switching transistors'. These lightweight inverters have lower surge and peak power output capability but are more cost effective as they are cheaper and easier to manufacture.

* Comparison of various all-in-one hybrid inverters and the Interactive inverters/chargers from Selectronic and Victron Energy. To be used as a guide only - refer to manufacturers specifications for full details.

Continuous Power Output

Most battery inverters (hybrid or Inverter/charger) are available in a wide range of sizes determined by the continuous output power rating measured in kW.

The inverter should be matched (sized) slighly higher than the load or power demand of the appliances it will be powering. Due to temperature de-rating the inverter should be at least 1.2 times larger than the continuous summer demand. Depending on the application this is often the most important specification to be considered when selecting a hybrid inverter especially when using a hybrid inverter as a back-up power source for dedicated or essential loads. Whether the loads are inductive or resistive is also very important and must be taken into account.

Note some inverters power ratings are provided in kVA which can be misleading. The general conversion ratio used for kVA to kW is kVA*0.8 = kW. For example a 5kVA inverter equates to roughly a 4kW inverter power rating.

For off-grid installations the inverter sizing is critical and must be sized to meet the full load (demand) under all conditions. As mentioned the temperature derating is especially important as the inverter output is derated (reduced) at higher ambient temperatures, for example a 6kW inverter which is rated and 20degC may only output a continuous power of 4.8kW at 40degC. This de-rating factor must be taken into account, especially in warmer climates.

Surge or Peak Power Output

The surge or peak power output is very important for off-grid systems but not always critical for a hybrid system. If you plan on powering high surge appliances such as water pumps, compressors, washing machines and power tools the inverter must be able to handle the high inductive surge loads.

The amount of time the inverter can maintain the surge power output is also very important, but can be misleading depending on how it is described by the manufacturer. For example some inverters may specify the surge output of say 8kW while others may specify 8kW for 60 seconds. Generally the high-end multi-mode or interactive inverters have the highest surge ratings for the longest amount of time. The Selectronic SP PRO is known to have the highest surge rating of any battery inverter/charger on the market.

Backup Power Output - Continuous

As highlighted in the chart above many all-in-one hybrid inverters have reduced or limited backup power when operating in backup or emergency supply mode. This can also be further limited by the battery capacity output rating depending on the battery size used. However there are several all-in-one hybrid inverters (Solax, Redback & SolarEdge) do not have reduced power output in backup mode. The dedicated battery inverter/chargers (interactive inverters) such as the Selectronic SP PRO and Victron Multiplus do not have any such limitations.

2. Solar Array Size - Solar PV Input

After sizing the PV array based on the energy consumption profile, location, losses, etc (as calculated by a solar professional) the next step is to determine the maximum solar array size in kW based on the specific hybrid or off-grid system used, which is usually limited by the inverter size. For off-grid systems the battery capacity (kWh) must also be considered when sizing the solar array.

Most hybrid systems have an intergrated solar inverter or MPPT. If the hybrid system contains a solar inverter, such as an all-in-one hybrid inverter, this will determine the maximum size solar array which can be used with the system (usually around 6-7kW). In comparison the high-end interactive battery inverter/chargers such as the SP PRO and Victron Multiplus can work with multiple solar inverters or DC regulators in both AC or DC coupled configurations. These systems can accommodate much larger solar arrays, which can also be expanded at a later stage if required.

3. Pass Through Power

The pass through power feature enables the inverter to supply additional power from the grid under high loads, when the batteries are low and when solar energy is not available. The ability to pass through additional power from the grid (or generator in an off-grid system) can greatly simplify the installation by not requiring separation of essential and non-essential loads. Note: Generally only high-end hybrid/off-grid interactive inverter/chargers can pass through additional power from the grid or be connected to a back-up generator. Selectronic, Victron Energy and Schneider electric all have pass through power capability.

4. Compatible Battery Type

Before the release of affordable lithium battery systems most battery inverters where designed to operate with the widely available lead-acid batteries (Gel, AGM & flooded). Lead-acid batteries are far more common but are larger, heavier and can emit gases which require ventilation, whereas lithium-ion batteries are lighter, more compact and are considered safe to store inside a garage. Most lithium battery systems have an integrated battery management system (BMS) which requires an inverter with compatible communications (network protocol) to operate safely and efficiently.

There are several 'non-managed' lithium LFP battery systems which do not require BMS communications to the inverter and will function much like a lead-acid battery system, these include Simpliphi PHI and GenZ LFP battery modules.

Battery Voltage

All hybrid/off-grid inverters are designed to be used with a specific nominal DC battery voltage, the most common being 48V. Since most lithium battery systems are 48V this is not a problem, however many small capacity inverters use 12V or 24V so these may only be compatible with lead-acid battery banks of the same voltage. Selectronic, SMA and Schneider have a range of high-end 48V hybrid/off-grid inverters while Victron Energy and Outback Power supply both dedicated 12V, 24V & 48V off-grid inverters.

The first Tesla Powerwall was one of the first battery systems to operate at a high voltage (400V) and is connected in-line with the solar array which generally operates at a similar voltage (300-500V). The SolarEdge StorEdge and Fronius Symo hybrid (3-phase) inverters both work with the high voltage battery systems.

Note: Unlike the traditional DC coupled solar controllers or regulators, all modern hybrid inverters cannot work with multiple battery voltages.

Battery Capacity - KWh

Battery capacity is measured in kWh (kilowatt/hour) and is the total amount of energy a battery system can store, however depending on the battery type and specifications not all of the capacity is usable energy. Common Lead-acid deep-cycle batteries (AGM & Gel) should only be used or discharged to 40-50% of total capacity, whereas Lithium-ion and new generation battery technologies can be discharged up to 80-100%. Therefore the battery type and capacity needs to be carefully selected to cater to the energy requirements.

Hybrid Vs Off-grid - A typical grid-connected home with peak (evening) energy use from 5pm until midnight might average 8 kWh, roughly a 12 kWh lithium battery would be sufficient. However for off-grid systems the battery system will need to be able to store enough energy for 3 or more days of bad weather. With an average (efficient) 3 bedroom home using 10-15kWh over a whole day this may require a much larger, very expensive 50-80kWh battery system.

Hybrid Example: If peak energy use (from 6-12pm) was 6kWh then the system would require roughly 14-16kWh lead-acid battery or 7-8kWh lithium battery system to adequately cover peak energy consumption.

5. configuration - AC or DC coupled

As solar battery systems became larger and more advanced AC coupled systems evolved as one of the best configurations due to the use of low cost, easy to install string solar inverters. Most modern off-grid AC coupled systems use advanced bi-directional multi-mode inverters coupled with one or more compatible solar inverters. AC coupled systems are generally more efficient during the day when there is high AC power demand such as air-conditioning systems, modern kitchen appliances and pool pumps.

However the new generation high voltage DC coupled battery systems (400V) are becoming more and more popular with the growing range of advanced HV hybrid inverters now on the market.

See the complete AC vs DC coupled system review article.

6. Software and Energy Management

To enable hybrid or off-grid power systems to optimise energy use and prolong battery life a high level of power management and battery monitoring is required. The software used to run hybrid/off-grid systems thus require advanced energy management and monitoring capabilities and this is where the high-end Interactive inverters really shine as they have the most advanced software packages and built-in control systems such as relays plus digital inputs and outputs. These systems also incorporate specialised battery monitoring and temperature sensors to prolong battery life when used with lead-acid battery banks.

 Example of logged data from a Redback technologies hybrid inverter - Image credit Redback Portal

Example of logged data from a Redback technologies hybrid inverter - Image credit Redback Portal

Several advanced hybrid inverters such as those from SolarEdge and Redback Technologies also include smart control features. For additional monitoring and control add on energy monitoring systems like Reposit Power can provide more advanced remote monitoring and smart control features.

Complete hybrid systems with built-in battery storage also utilise advanced energy management systems and sensors however some of the low cost all-in-one hybrid inverters have limited capabilities which can result in less efficient use of stored energy.

See our Hybrid/off-grid inverter and energy storage summary for direct comparison of all available hybrid and energy storage systems: