contact us

Use the form on the right to contact us.

You can edit the text in this area, and change where the contact form on the right submits to, by entering edit mode using the modes on the bottom right.

           

123 Street Avenue, City Town, 99999

(123) 555-6789

email@address.com

 

You can set your address, phone number, email and site description in the settings tab.
Link to read me page with more information.

Blog

Find reviews of the best Solar Products, SMA Sunny Boy, Aurora Power-One, Growatt, SunPower, SolaX, QCells, Trina Solar, Jinko, Selectronic, Tesla Powerwall, ABB, SMA Sunny Island, Hybrid inverters, battery sizing, Lithium-ion, lead-acid batteries, off-grid, on-grid, stand-alone power systems

What are mono silicon, poly silicon and thin film solar panels?

Martin Newkirk

PV panel types

Luke Boyden

Solar panels (or solar modules) are assemblies of individual solar cells housed within a supporting structure or frame. The solar cells (also known as Photovoltaic Cells or PV cells) generate electricity when they are exposed to light. As a general rule the more light which falls on the solar panel the more electricity is produced. It is a common misconception that heat helps generate electricity from solar panels, in fact the opposite is true, heat actually decreases the electrical power of a solar panel.

There are a number of different technologies used to create solar panels. PV cells have been produced since the 1950s and for a long time silicon was the only technology used. However, over the past decade or so new technologies have been developed to compete with silicon. Thin film technology made huge progress in the 2000s and came very close to overtaking silicon as the main technology. However, just as thin film pricing started to beat silicon pricing, the cost of silicon panels plunged dramatically, largely on the back of mass production beginning in China. Now (in 2014) we are starting to see very high efficiencies for thin film technology and the price is again starting to compete with silicon. Other technologies are also coming on board and we will see prices continue to drop and efficiencies continue to rise on the back of that.

Types of panels and cells

Crystalline silicon cell types

Mono-crystalline

Silicon produced as a single crystal with a continuous internal structure is used for mono-crystalline cells. This type of silicon is manufactured into a large cylindrical ingot and then thinly sliced to create wafer cells. These manufacturing processes demand greater resources than poly-crystalline cells and so generally cost more, but do offer slightly higher efficiency.

Poly-crystalline

More correctly known as multi-crystalline is silicon made from multiple crystals that give a distinct flaky appearance. This type of silicon can be manufactured in square ingots and is less resource intensive to produce..

The process of producing poly-crystalline wafers has improved to a stage now in 2014 where by the efficiency and performance of a poly-crystalline panel is comparable to that of a mono-crystalline panel but at a cheaper cost.

Thin-film

Made by deposition of exceptionally thin layers of photovoltaic material on a substrate, thin film technology employs a range of materials including silicon, cadmium, copper, amongst others to create a solar cell. Both rigid and flexible thin-film modules can be created, allowing solar generation to be better integrated into products and buildings compared to crystalline silicon.

Multi-junction

Most photovoltaic cells use one main material with specially chosen impurities added, to convert energy from the light into electricity. These cells can only use a certain part of the light spectrum (i.e. specific wavelength, or colour) to convert light energy to electricity. Multi-junction cells have different material combinations that allow them to convert more of the received light energy into electricity. The cells are produced in a similar manner to thin-film cells, but are more complex to manufacture and are much more expensive. MJ cells can achieve a significantly higher efficiency than conventional solar cells (up to 40% compared to 15-25%).